metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C22×C4).30D6, C2.5(C42⋊3S3), C3⋊(C23.84C23), C2.C42.6S3, C6.C42.8C2, C6.19(C42⋊2C2), C22.88(C4○D12), (C22×C6).287C23, (C22×C12).11C22, C23.368(C22×S3), C22.87(D4⋊2S3), C22.43(Q8⋊3S3), C2.11(C23.8D6), (C22×Dic3).12C22, C2.9(C4⋊C4⋊S3), (C2×C6).130(C4○D4), (C3×C2.C42).2C2, SmallGroup(192,221)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C22×C4).30D6
G = < a,b,c,d,e | a2=b2=c4=1, d6=ba=ab, e2=bc2, ac=ca, ad=da, ae=ea, dcd-1=bc=cb, bd=db, be=eb, ece-1=abc, ede-1=abc2d5 >
Subgroups: 304 in 118 conjugacy classes, 51 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C23, Dic3, C12, C2×C6, C2×C6, C22×C4, C22×C4, C2×Dic3, C2×C12, C22×C6, C2.C42, C2.C42, C22×Dic3, C22×Dic3, C22×C12, C23.84C23, C6.C42, C3×C2.C42, (C22×C4).30D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, C42⋊2C2, C4○D12, D4⋊2S3, Q8⋊3S3, C23.84C23, C42⋊3S3, C23.8D6, C4⋊C4⋊S3, (C22×C4).30D6
(1 117)(2 118)(3 119)(4 120)(5 109)(6 110)(7 111)(8 112)(9 113)(10 114)(11 115)(12 116)(13 88)(14 89)(15 90)(16 91)(17 92)(18 93)(19 94)(20 95)(21 96)(22 85)(23 86)(24 87)(25 167)(26 168)(27 157)(28 158)(29 159)(30 160)(31 161)(32 162)(33 163)(34 164)(35 165)(36 166)(37 177)(38 178)(39 179)(40 180)(41 169)(42 170)(43 171)(44 172)(45 173)(46 174)(47 175)(48 176)(49 181)(50 182)(51 183)(52 184)(53 185)(54 186)(55 187)(56 188)(57 189)(58 190)(59 191)(60 192)(61 103)(62 104)(63 105)(64 106)(65 107)(66 108)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 129)(74 130)(75 131)(76 132)(77 121)(78 122)(79 123)(80 124)(81 125)(82 126)(83 127)(84 128)(133 155)(134 156)(135 145)(136 146)(137 147)(138 148)(139 149)(140 150)(141 151)(142 152)(143 153)(144 154)
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 109)(12 110)(13 94)(14 95)(15 96)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(25 161)(26 162)(27 163)(28 164)(29 165)(30 166)(31 167)(32 168)(33 157)(34 158)(35 159)(36 160)(37 171)(38 172)(39 173)(40 174)(41 175)(42 176)(43 177)(44 178)(45 179)(46 180)(47 169)(48 170)(49 187)(50 188)(51 189)(52 190)(53 191)(54 192)(55 181)(56 182)(57 183)(58 184)(59 185)(60 186)(61 97)(62 98)(63 99)(64 100)(65 101)(66 102)(67 103)(68 104)(69 105)(70 106)(71 107)(72 108)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)(81 131)(82 132)(83 121)(84 122)(133 149)(134 150)(135 151)(136 152)(137 153)(138 154)(139 155)(140 156)(141 145)(142 146)(143 147)(144 148)
(1 147 86 73)(2 144 87 124)(3 149 88 75)(4 134 89 126)(5 151 90 77)(6 136 91 128)(7 153 92 79)(8 138 93 130)(9 155 94 81)(10 140 95 132)(11 145 96 83)(12 142 85 122)(13 131 119 139)(14 82 120 156)(15 121 109 141)(16 84 110 146)(17 123 111 143)(18 74 112 148)(19 125 113 133)(20 76 114 150)(21 127 115 135)(22 78 116 152)(23 129 117 137)(24 80 118 154)(25 189 103 170)(26 52 104 37)(27 191 105 172)(28 54 106 39)(29 181 107 174)(30 56 108 41)(31 183 97 176)(32 58 98 43)(33 185 99 178)(34 60 100 45)(35 187 101 180)(36 50 102 47)(38 163 53 69)(40 165 55 71)(42 167 57 61)(44 157 59 63)(46 159 49 65)(48 161 51 67)(62 177 168 184)(64 179 158 186)(66 169 160 188)(68 171 162 190)(70 173 164 192)(72 175 166 182)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 71 17 29)(2 164 18 106)(3 69 19 27)(4 162 20 104)(5 67 21 25)(6 160 22 102)(7 65 23 35)(8 158 24 100)(9 63 13 33)(10 168 14 98)(11 61 15 31)(12 166 16 108)(26 89 68 114)(28 87 70 112)(30 85 72 110)(32 95 62 120)(34 93 64 118)(36 91 66 116)(37 140 190 82)(38 131 191 155)(39 138 192 80)(40 129 181 153)(41 136 182 78)(42 127 183 151)(43 134 184 76)(44 125 185 149)(45 144 186 74)(46 123 187 147)(47 142 188 84)(48 121 189 145)(49 143 180 73)(50 122 169 146)(51 141 170 83)(52 132 171 156)(53 139 172 81)(54 130 173 154)(55 137 174 79)(56 128 175 152)(57 135 176 77)(58 126 177 150)(59 133 178 75)(60 124 179 148)(86 165 111 107)(88 163 113 105)(90 161 115 103)(92 159 117 101)(94 157 119 99)(96 167 109 97)
G:=sub<Sym(192)| (1,117)(2,118)(3,119)(4,120)(5,109)(6,110)(7,111)(8,112)(9,113)(10,114)(11,115)(12,116)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,85)(23,86)(24,87)(25,167)(26,168)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,177)(38,178)(39,179)(40,180)(41,169)(42,170)(43,171)(44,172)(45,173)(46,174)(47,175)(48,176)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,129)(74,130)(75,131)(76,132)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(133,155)(134,156)(135,145)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,109)(12,110)(13,94)(14,95)(15,96)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,161)(26,162)(27,163)(28,164)(29,165)(30,166)(31,167)(32,168)(33,157)(34,158)(35,159)(36,160)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,169)(48,170)(49,187)(50,188)(51,189)(52,190)(53,191)(54,192)(55,181)(56,182)(57,183)(58,184)(59,185)(60,186)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,121)(84,122)(133,149)(134,150)(135,151)(136,152)(137,153)(138,154)(139,155)(140,156)(141,145)(142,146)(143,147)(144,148), (1,147,86,73)(2,144,87,124)(3,149,88,75)(4,134,89,126)(5,151,90,77)(6,136,91,128)(7,153,92,79)(8,138,93,130)(9,155,94,81)(10,140,95,132)(11,145,96,83)(12,142,85,122)(13,131,119,139)(14,82,120,156)(15,121,109,141)(16,84,110,146)(17,123,111,143)(18,74,112,148)(19,125,113,133)(20,76,114,150)(21,127,115,135)(22,78,116,152)(23,129,117,137)(24,80,118,154)(25,189,103,170)(26,52,104,37)(27,191,105,172)(28,54,106,39)(29,181,107,174)(30,56,108,41)(31,183,97,176)(32,58,98,43)(33,185,99,178)(34,60,100,45)(35,187,101,180)(36,50,102,47)(38,163,53,69)(40,165,55,71)(42,167,57,61)(44,157,59,63)(46,159,49,65)(48,161,51,67)(62,177,168,184)(64,179,158,186)(66,169,160,188)(68,171,162,190)(70,173,164,192)(72,175,166,182), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,71,17,29)(2,164,18,106)(3,69,19,27)(4,162,20,104)(5,67,21,25)(6,160,22,102)(7,65,23,35)(8,158,24,100)(9,63,13,33)(10,168,14,98)(11,61,15,31)(12,166,16,108)(26,89,68,114)(28,87,70,112)(30,85,72,110)(32,95,62,120)(34,93,64,118)(36,91,66,116)(37,140,190,82)(38,131,191,155)(39,138,192,80)(40,129,181,153)(41,136,182,78)(42,127,183,151)(43,134,184,76)(44,125,185,149)(45,144,186,74)(46,123,187,147)(47,142,188,84)(48,121,189,145)(49,143,180,73)(50,122,169,146)(51,141,170,83)(52,132,171,156)(53,139,172,81)(54,130,173,154)(55,137,174,79)(56,128,175,152)(57,135,176,77)(58,126,177,150)(59,133,178,75)(60,124,179,148)(86,165,111,107)(88,163,113,105)(90,161,115,103)(92,159,117,101)(94,157,119,99)(96,167,109,97)>;
G:=Group( (1,117)(2,118)(3,119)(4,120)(5,109)(6,110)(7,111)(8,112)(9,113)(10,114)(11,115)(12,116)(13,88)(14,89)(15,90)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,85)(23,86)(24,87)(25,167)(26,168)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,177)(38,178)(39,179)(40,180)(41,169)(42,170)(43,171)(44,172)(45,173)(46,174)(47,175)(48,176)(49,181)(50,182)(51,183)(52,184)(53,185)(54,186)(55,187)(56,188)(57,189)(58,190)(59,191)(60,192)(61,103)(62,104)(63,105)(64,106)(65,107)(66,108)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,129)(74,130)(75,131)(76,132)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(133,155)(134,156)(135,145)(136,146)(137,147)(138,148)(139,149)(140,150)(141,151)(142,152)(143,153)(144,154), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,109)(12,110)(13,94)(14,95)(15,96)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(25,161)(26,162)(27,163)(28,164)(29,165)(30,166)(31,167)(32,168)(33,157)(34,158)(35,159)(36,160)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,177)(44,178)(45,179)(46,180)(47,169)(48,170)(49,187)(50,188)(51,189)(52,190)(53,191)(54,192)(55,181)(56,182)(57,183)(58,184)(59,185)(60,186)(61,97)(62,98)(63,99)(64,100)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,121)(84,122)(133,149)(134,150)(135,151)(136,152)(137,153)(138,154)(139,155)(140,156)(141,145)(142,146)(143,147)(144,148), (1,147,86,73)(2,144,87,124)(3,149,88,75)(4,134,89,126)(5,151,90,77)(6,136,91,128)(7,153,92,79)(8,138,93,130)(9,155,94,81)(10,140,95,132)(11,145,96,83)(12,142,85,122)(13,131,119,139)(14,82,120,156)(15,121,109,141)(16,84,110,146)(17,123,111,143)(18,74,112,148)(19,125,113,133)(20,76,114,150)(21,127,115,135)(22,78,116,152)(23,129,117,137)(24,80,118,154)(25,189,103,170)(26,52,104,37)(27,191,105,172)(28,54,106,39)(29,181,107,174)(30,56,108,41)(31,183,97,176)(32,58,98,43)(33,185,99,178)(34,60,100,45)(35,187,101,180)(36,50,102,47)(38,163,53,69)(40,165,55,71)(42,167,57,61)(44,157,59,63)(46,159,49,65)(48,161,51,67)(62,177,168,184)(64,179,158,186)(66,169,160,188)(68,171,162,190)(70,173,164,192)(72,175,166,182), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,71,17,29)(2,164,18,106)(3,69,19,27)(4,162,20,104)(5,67,21,25)(6,160,22,102)(7,65,23,35)(8,158,24,100)(9,63,13,33)(10,168,14,98)(11,61,15,31)(12,166,16,108)(26,89,68,114)(28,87,70,112)(30,85,72,110)(32,95,62,120)(34,93,64,118)(36,91,66,116)(37,140,190,82)(38,131,191,155)(39,138,192,80)(40,129,181,153)(41,136,182,78)(42,127,183,151)(43,134,184,76)(44,125,185,149)(45,144,186,74)(46,123,187,147)(47,142,188,84)(48,121,189,145)(49,143,180,73)(50,122,169,146)(51,141,170,83)(52,132,171,156)(53,139,172,81)(54,130,173,154)(55,137,174,79)(56,128,175,152)(57,135,176,77)(58,126,177,150)(59,133,178,75)(60,124,179,148)(86,165,111,107)(88,163,113,105)(90,161,115,103)(92,159,117,101)(94,157,119,99)(96,167,109,97) );
G=PermutationGroup([[(1,117),(2,118),(3,119),(4,120),(5,109),(6,110),(7,111),(8,112),(9,113),(10,114),(11,115),(12,116),(13,88),(14,89),(15,90),(16,91),(17,92),(18,93),(19,94),(20,95),(21,96),(22,85),(23,86),(24,87),(25,167),(26,168),(27,157),(28,158),(29,159),(30,160),(31,161),(32,162),(33,163),(34,164),(35,165),(36,166),(37,177),(38,178),(39,179),(40,180),(41,169),(42,170),(43,171),(44,172),(45,173),(46,174),(47,175),(48,176),(49,181),(50,182),(51,183),(52,184),(53,185),(54,186),(55,187),(56,188),(57,189),(58,190),(59,191),(60,192),(61,103),(62,104),(63,105),(64,106),(65,107),(66,108),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,129),(74,130),(75,131),(76,132),(77,121),(78,122),(79,123),(80,124),(81,125),(82,126),(83,127),(84,128),(133,155),(134,156),(135,145),(136,146),(137,147),(138,148),(139,149),(140,150),(141,151),(142,152),(143,153),(144,154)], [(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,109),(12,110),(13,94),(14,95),(15,96),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(25,161),(26,162),(27,163),(28,164),(29,165),(30,166),(31,167),(32,168),(33,157),(34,158),(35,159),(36,160),(37,171),(38,172),(39,173),(40,174),(41,175),(42,176),(43,177),(44,178),(45,179),(46,180),(47,169),(48,170),(49,187),(50,188),(51,189),(52,190),(53,191),(54,192),(55,181),(56,182),(57,183),(58,184),(59,185),(60,186),(61,97),(62,98),(63,99),(64,100),(65,101),(66,102),(67,103),(68,104),(69,105),(70,106),(71,107),(72,108),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130),(81,131),(82,132),(83,121),(84,122),(133,149),(134,150),(135,151),(136,152),(137,153),(138,154),(139,155),(140,156),(141,145),(142,146),(143,147),(144,148)], [(1,147,86,73),(2,144,87,124),(3,149,88,75),(4,134,89,126),(5,151,90,77),(6,136,91,128),(7,153,92,79),(8,138,93,130),(9,155,94,81),(10,140,95,132),(11,145,96,83),(12,142,85,122),(13,131,119,139),(14,82,120,156),(15,121,109,141),(16,84,110,146),(17,123,111,143),(18,74,112,148),(19,125,113,133),(20,76,114,150),(21,127,115,135),(22,78,116,152),(23,129,117,137),(24,80,118,154),(25,189,103,170),(26,52,104,37),(27,191,105,172),(28,54,106,39),(29,181,107,174),(30,56,108,41),(31,183,97,176),(32,58,98,43),(33,185,99,178),(34,60,100,45),(35,187,101,180),(36,50,102,47),(38,163,53,69),(40,165,55,71),(42,167,57,61),(44,157,59,63),(46,159,49,65),(48,161,51,67),(62,177,168,184),(64,179,158,186),(66,169,160,188),(68,171,162,190),(70,173,164,192),(72,175,166,182)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,71,17,29),(2,164,18,106),(3,69,19,27),(4,162,20,104),(5,67,21,25),(6,160,22,102),(7,65,23,35),(8,158,24,100),(9,63,13,33),(10,168,14,98),(11,61,15,31),(12,166,16,108),(26,89,68,114),(28,87,70,112),(30,85,72,110),(32,95,62,120),(34,93,64,118),(36,91,66,116),(37,140,190,82),(38,131,191,155),(39,138,192,80),(40,129,181,153),(41,136,182,78),(42,127,183,151),(43,134,184,76),(44,125,185,149),(45,144,186,74),(46,123,187,147),(47,142,188,84),(48,121,189,145),(49,143,180,73),(50,122,169,146),(51,141,170,83),(52,132,171,156),(53,139,172,81),(54,130,173,154),(55,137,174,79),(56,128,175,152),(57,135,176,77),(58,126,177,150),(59,133,178,75),(60,124,179,148),(86,165,111,107),(88,163,113,105),(90,161,115,103),(92,159,117,101),(94,157,119,99),(96,167,109,97)]])
42 conjugacy classes
class | 1 | 2A | ··· | 2G | 3 | 4A | ··· | 4F | 4G | ··· | 4N | 6A | ··· | 6G | 12A | ··· | 12L |
order | 1 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 4 | ··· | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | S3 | D6 | C4○D4 | C4○D12 | D4⋊2S3 | Q8⋊3S3 |
kernel | (C22×C4).30D6 | C6.C42 | C3×C2.C42 | C2.C42 | C22×C4 | C2×C6 | C22 | C22 | C22 |
# reps | 1 | 6 | 1 | 1 | 3 | 14 | 12 | 3 | 1 |
Matrix representation of (C22×C4).30D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 11 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 6 |
0 | 0 | 0 | 0 | 7 | 3 |
5 | 11 | 0 | 0 | 0 | 0 |
12 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 0 | 0 | 0 | 5 | 8 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 10 | 0 | 0 |
0 | 0 | 3 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 2 | 2 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,8,0,0,0,0,0,1,0,0,0,0,0,0,4,11,0,0,0,0,2,9,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[5,12,0,0,0,0,11,8,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,8,8],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,7,3,0,0,0,0,10,6,0,0,0,0,0,0,11,2,0,0,0,0,4,2] >;
(C22×C4).30D6 in GAP, Magma, Sage, TeX
(C_2^2\times C_4)._{30}D_6
% in TeX
G:=Group("(C2^2xC4).30D6");
// GroupNames label
G:=SmallGroup(192,221);
// by ID
G=gap.SmallGroup(192,221);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,64,1262,387,268,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^6=b*a=a*b,e^2=b*c^2,a*c=c*a,a*d=d*a,a*e=e*a,d*c*d^-1=b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=a*b*c,e*d*e^-1=a*b*c^2*d^5>;
// generators/relations